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Abstract. Field emission from a metal nanotip is studied, because of its relevance to the
modelling of the Fresnel projection microscope. This study includes the development of a new
numerical approach to the axially symmetric Schrödinger equations.

1. Introduction

Tunnelling electrons encountering a potential barrier with axial symmetry have special
properties, closely related to the nodal distribution of the eigenfunctions. These properties
can often be exploited to facilitate the numerical solution of the one-body Schrödinger
equation used to assess the electron current distribution for the discrete or continuous parts
of its energy spectrum. Discrete states will not be discussed here, as this subject is amply
discussed in most quantum chemistry textbooks. Rather, we will emphasize the incidence
of the angular invariance on the continuous part of the spectrum, and use the conclusions
to examine a microscopic model for the nanotip field emission.

The study is organized as follows. First, the consequences of the axial symmetry on the
wavefunction are discussed and the set of coupled Schrödinger equations resulting from the
symmetry specifications are derived. Next, the field-emission problem is formulated using
a transfer-matrix approach. The modelling of field emission is discussed in section 3. SI
units are used everywhere in this paper.

2. The axial symmetry

The axial symmetry is relevant to peculiar scattering problems, i.e. situations where the
relevant parts of the system are invariant under any finite rotation. In this situation, the
scattering problem is best formulated in cylindrical coordinates, choosing the symmetry
axis as axial directionz. The polar coordinates in the plane normal to the symmetry axis
are denotedφ (azimuthal angle) andρ (radial distance to the axis). A first step to a
numerical treatment of this problem consists of a discrete expansion of the wavefunction.
In this context, it is natural to consider the complete set of eigenfunctions generated by the
Schr̈odinger equation

− h̄
2

2m
∇2ψ(r)+ V0(z)ψ(r) = Eψ(r). (1)
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The potentialV0(z) is considered independent ofφ and ρ. The eigenfunctions are
easily determined, and their set remains enumerable, as one specifies that the scattering
electron remains localized inside a cylinder of radiusR (preferably large compared with all
electron wavelengths of interest) [1]. In this case, the basis functions are easily determined
to factorize into

ψm,j (r) = 8m,j (z)Jm(km,jρ)

(
2π
∫ R

0
ρ[Jm(km,jρ)]

2 dρ

)−1/2

eimφ. (2)

Here, the azimuthal quantum numberm takes all negative and positive integer values, and
j is another integer, which ranges from 0 to+∞. These quantum numbers are used to
enumerate the values ofkm,j such thatJm(km,jR) = 0. This complete and orthogonal set
of eigenfunctions provides a convenient basis to expand the sought standing wavefunctions
in the axially symmetric three-dimensional scattering problem.

The full three-dimensional potentialV (ρ, z) is now assumed to have a radial dependence
contained in an additional termVp(ρ, z), i.e. V (ρ, z) = V0(z) + Vp(ρ, z). With this
assumption, the electron Schrödinger equation takes the form

− h̄
2

2m
∇29(r)+ [V0(z)+ Vp(ρ, z)]9(r) = E9(r). (3)

For this fully generalized equation, the eigenstates can be sought in the form of an expansion

9(r) =
∑
m

∑
j

8m,j (z)Jm(km,jρ)

(
2π
∫ R

0
ρ[Jm(km,jρ)]

2 dρ

)−1/2

eimφ (4)

where the coefficients satisfy the exact one-dimensional set of coupled equations

d28m,j (z)

dz2
+
[

2m

h̄2 E − k2
m,j −

2m

h̄2 V0(z)

]
8m,j (z) =

∑
j ′
M
j ′
m,j (z)8m,j ′(z). (5)

The coupling coefficients are then obtained from

M
j ′
m,j (z) =

2m

h̄2

(∫ R

0
dρ ρVp(ρ, z)Jm(km,jρ)Jm(km,j ′ρ)

)(∫ R

0
dρ ρ[Jm(km,jρ)]

2

)−1/2

×
(∫ R

0
dρ ρ[Jm(km,j ′ρ)]

2

)−1/2

. (6)

Writing V0(z) + Vp(ρ, z) instead ofV (ρ, z) is useful, since the coupling coefficients
corresponding to theρ-independent partV0(ρ, z) of the potential analytically appear as
M
j ′
m,j (z) = (2m/h̄2)V0(z)δj,j ′ . Better precision in solving equation (5) is achieved if the

main part ofV (ρ, z) appears inV0(z). The computation of the coupling coefficientsMj ′
m,j (z)

is further simplified ifVp(ρ, z) disappears forρ greater than someρmax satisfyingρmax < R.
Equation (5) is presented so that propagating terms are written on the left-hand side and

coupling terms are moved to the right-hand side. It is apparent that the different terms in
the wavefunction expansion in expression (4) do not mix with each other if the perturbing
potentialVp(ρ, z), dependent onρ, vanishes. It is also straightforward that coupling occurs
only between components with the samem subscripts. It is therefore possible to consider
the diffusion problem for eachm value separately.

The presence of Bessel functions in the expression of theM
j ′
m,j makes their computation

very difficult. These should be evaluated for each value ofz and used in equation (5). The
numerical difficulties can be drastically reduced if the potentialV (ρ, z) (or its decomposition
into V0(z) + Vp(ρ, z)) is assumed to be constant over small steps inρ and z. Analytical
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expressions (i.e. Lommel’s formula [2]) can be used to computeM
j ′
m,j (z). These terms being

constant over small steps in thez direction, special methods can be used to handle equation
(5), i.e. discoupling this set of equations via an eigensystem method. This is discussed with
further details in appendix A.

3. Field emission

Field emission [3–8] is basic to, among other uses, electron microscopy. The electron
emission from metal surfaces was first explained by Fowler and Nordheim [3] in terms
of quantum-mechanical events: the potential barrier which, under zero bias, prevents the
electrons from escaping the metal is lowered by the applied electric field and the electron
emission results from tunnelling across this lowered barrier.

The previously derived equations can be used in this specific problem, substituting
existing theories without being confined to specific geometries [9–11] (planar, hyperboloids,
. . .). Our method, based on the numerical solution of equations (5) and (6), does not imply
the usual modelling restrictions.

The subject of this section will be the field emission obtained through the use of nanotips
[12–16]. These small tips, whose height is of the order of 2 nm, usually stand on the top of
a tungsten larger tip. These tips are those used to operate the Fresnel projection microscope
(FPM) [17, 18]. The field is obtained from an electric bias established between the tip and a
conducting grid a few tens of nanometres apart. This field is responsible for the appearance
of an electronic micro-beam. In the FPM, a molecule can be placed in this beam, producing
a ‘shadow’ [19] observable on a macroscopically distant screen.

Field emission from small tips also finds applications in flat panel displays [27–29].
They consist of large arrays of microscopic tips facing a grid. The bias between the grid
and the support of the tips is responsible for a field-emission process. A relevant theory
would allow the computation of the current obtained by such displays for a given bias.

The high coherence [26] of electrons field emitted by the nanotips gives physical
consistence to the equations of section 2. However, since the electrons are confined inside
a microscopic cylinder, the results of these calculations will have physical meaning only at
microscopic distance from the emitting tip, where the wavefunction cancellation condition
at ρ = R is acceptable. Let us study the field-emission process from such nanotips.

For simplicity, the tip will be represented by a cone standing on a semi-infinite metal
delimited by a plane. The symmetryz-axis will be placed at the centre of the cone withz = 0
coinciding with the plane surface of the infinite metal substrate, assuming the existence of
an electric biasV between this and the grid atz = D. Let us suppose the potential to
be constant beyond this plane (D being large enough, with no bias between the grid and
a hypothetical distant screen). The tip metal is described here using a simple Sommerfeld
picture, characterized by empirical values ofW (work function) andEF (Fermi energy).
The dielectric constantεr takes infinite values inside the metal.

This situation of complete symmetry around thez-axis is relevant to equations (5) and
(6). The field-emission phenomenon will result in the production of an electronic beam
mainly confined to thez-axis region. The hypothesis of the wavefunction cancellation
beyond ρ = R is therefore acceptable, ifR is chosen large enough. It appears in
the simulations that the main contribution to the wavefunction comes from coefficients
pertaining tom = 0. This means that only a limited number ofm values need be considered.

The first step here is to perform a computation of the potential distribution. It is
considered constant beyondz = D where its value will conventionally be set to zero. For
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negativez values and inside the metallic tip, the potential energy is (V −W − EF ). The
electrostatic potential in the intermediate region 0< z < D is obtained by application of
an over-relaxation method [20] (presented in appendix B), taking into account the axial
invariance and the non-uniformity of the dielectric constantεr . The biasV between the
two planesz = 0 andz = D gives the boundary conditions. The image potential is also
numerically computed (cf [20]) and incorporated into the former calculated electrostatic
potential.

The next step is to obtain the transfer matrix [21, 22] of the system. It is known from
expression (4) that the wavefunction can be expanded into a series which can be seen as a
superposition with coefficients8m,j (z) of the basis functions:

Jm(km,jρ)

(
2π
∫ R

0
ρ[Jm(km,jρ)]

2 dρ

)−1/2

eimφ. (7)

In the metal (z < 0) and beyond the grid (z > D), the coefficients8m,j (z) appear,
following equation (5), to be simple plane waves describing electron propagation towards
negative or positivez values if they are not real exponential functions. This is due to the
electron confinement in a cylinder, which is invariant alongz, and is another indication that
the confinement hypothesis is relevant only for distances of the order ofR. In the FPM,
the wavefunction would become, at greater distances, a superposition of spherical waves,
due to the central asymptotic potential at macroscopic scales.

The range ofj subscript considered is limited here by the condition(h̄2/2m)k2
m,j 6 E,

so that only travelling plane waves are present in8m,j (z) in the regionz > D.
In order to obtain the transfer matrices, each outgoing basis function in the regionz > D

has to be considered individually. In all cases, there is no basis function in the regionz > D

coming back fromz = +∞. Knowing the wavefunction atz = D, using equations (5) and
(6), the wavefunction can be constructed atz = 0 and decomposed into elementary basis
functions coming from or going toz = −∞. Theρ-independent partV0(z) of the potential
distributionV (ρ, z) computed in the first step takes the valueV0(z) = V (R, z).

It has already been noted that basis functions characterized by differentm subscripts
propagate without interaction. It is consequently allowable to treat allm values individually.
The basis functions are characterized by their radial wavevectorkm,j . The amplitude of the
plane wave associated with the coefficients8m,j (z) of the wavefunction representation are
assembled as vectors, where the coefficients corresponding to positivekm,j values are taken
first and the ones corresponding to negativekm,j values are taken last. The coefficients are
each time classified according thej subscript. LetAm,j (Bm,j ) be the amplitude of the
plane wave corresponding tokm,j with positive (negative)z oriented wavevector. Due to
linearity, the coefficients of a wavefunction expansion atz = 0 can be linearly related to
the corresponding coefficients atz = D:(

(Am,j )j
(Bm,j )j

)
z=0

=
(
(M) (N)

(O) (P )

)(
(Am,j )j
(Bm,j )j

)
z=D

. (8)

Taking incident wavefunctions with unit amplitude and reminding the absence of plane
waves coming back fromz = +∞, the above relations reduce to:(

(I )

(t−+)

)
=
(
(M) (N)

(O) (P )

)(
(t++)
(O)

)
(9)

which are solved to give

(t++) = (M)−1

(t−+) = (O)(M)−1. (10)
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The matrix(t++) gives the amplitudes of the transmitted basis functions for each incident
basis function with unit amplitude atz = 0. The matrix(t−+) gives the amplitudes for
the corresponding reflected basis functions. The matrices (M) and (O) are simply obtained
after propagation of each basis function fromz = D to z = 0.

This method, which assumes an efficient treatment of equations (5) and (6), is very stable
because the numerical integration (towards negativez values) is carried out in the direction
opposite to the physical wave propagation (towards positivez values). In fact, a one-
dimensional potential barrier in tunnelling problems gives rise to a pair of evanescent waves
propagating against each other. Both waves are evanescent in their natural propagation
direction but increase exponentially in the opposite direction. Numerically, for a chosen
integration direction, the growing solution will dominate the diminishing wave, forcing the
integration to be done so that the dominant solution is the physical one.

For a wide potential barrier, it is not always possible to compute in a single step the
transfer matrices corresponding to the total distanceD. In these cases, the intervalD can
be divided into smaller slabs. Four transfer matrices computed for each slab, namely(t−+)
and(t++), as considered previously and(t−−) and(t+−) which describe the behaviour of an
incident wave travelling fromz = +∞. Pendry [23] developed a very efficient procedure
to assemble constitutive slabs for this system. Another method to stabilize the computation
is to exclude for each slab the waves whose normal energyE − (h̄2/2m)k2

m,j is too small.
These waves are considered to be completely reflected, by forcing the value of the transfer
matrices expressing reflection ((t−+) and(t+−)).

Once the transfer matrix of the total system is known (the region 0< z < D and
the metal), it is easy to compute the particle probability density in the regionz > D.
Each incident basis function inz = 0 has to be considered individually, using the transfer
matrix (t++) to obtain the corresponding wavefunction in the regionz > D, computing
the corresponding intensity|9m,j (ρ, φ, z)|2. A weighted sum of particle densities is then
performed (contrasting with a weighted sum of amplitudes). The reason of this loss of
coherence is the absence of correlation between the incoming electrons. The observed
intensity is contributed by all the incoming electrons, each of them participating in an
independent experiment.

The weight to each incoming basis function is taken to be its contribution to the total
density of states at the Fermi levelEF for electrons captured in a cylinder of radiusR:

D(EF ) = 8m

(Rh)2

∑
m

∑
j

1√
2mEF/h̄− k2

m,j

(11)

where all quantities have already been defined. This expression is derived in appendix C.
The current density can be obtained in a similar way. This is done by using the

expression for the current densityJ associated with a wavefunction9:

J(r) = 1

m
Re

[
9(r)∗

(
h̄

i
∇9(r)

)]
. (12)

In cylindrical coordinates, there is no dependence on the azimuthal angleφ because
m = 0 does not contribute toJφ and because contributions due to non-zero oppositem

values cancel out.
The procedure is clearly similar to that adopted for the computation of the intensity. A

weighted sum of the current density corresponding to each incident basis function in the
metal is performed. The weights are the same as those used for the particle density.

There are two important points to notice. First, the ‘current density’ as obtained is
a quantum-mechanical concept associated with the electron wavefunctions at Fermi level.
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By contrast, the electric current densityj(r) of physical significance contains the electron
chargee and gathers contributions from electrons with all possible energyE. The relevant
relation is

∂j (r)

∂E
= eJ(r, E) (13)

whereJ(r, E) is the quantum-mechanical current density obtained by considering electrons
with energyE. In order to obtainj(r), J(r, E) has to be computed at Fermi levelEF and
other energy levels belowEF and an integration has to be performed.

The second point is the importance of a correct wavefunction normalization in order to
correctly evaluatej(r), on an absolute scale. The idea is to multiply each wavefunction
obtained by this method by the same normalization coefficientA, requiring us to obtain
the correct electron density inside the metal. This choice of the normalization allows the
probability to find an electron in a given section of the cylinder to be the same for each
basis function (7).

With a Sommerfeld free electron metal, the Fermi energyEF is related to the electron
densityρelec through the relation

EF = h̄2

2m
[3π2ρelec]

2/3.

The electron density is assumed to be constant in the cylinder of radiusR.
The electron density can also be obtained by an integration (sum) of|9|2 over all

occupied states. In representation (4), this becomes

ρelec(r) =
∫ EF

0
dE

∑
m

∑
j

8m

(Rh)2

1√
2mE/h̄2− k2

m,j

|A|2Jm(km,jρ)2

×
(

2π
∫ R

0
ρ[Jm(km,jρ)]

2 dρ

)−1

. (14)

This expression assumes zero temperature (no occupied states above the Fermi level).
Evaluating this expression on thez axis (ρ = 0), it becomes

ρelec = |A|2 8m

(Rh)2

∫ EF

0
dE

∑
j

1√
2mE/h̄2− k2

0,j

(
2π
∫ R

0
ρ[J0(k0,j ρ)]

2 dρ

)−1

. (15)

The integration overE is easily performed. Actually, considering all possiblej andE
values (up toEF ), it is possible to swap the sum overj and the integration overE, so that
the integration is almost immediate. Knowing the electron densityρelec, the normalization
coefficientA is derived from equation (15).

4. Results

The dimensions of the nanotip are 1 nm for the basis radius and 2 nm for the height. In
order to allow a comparison with former computations [4], relevant to a tungsten planar
emitter, the same parameters were taken, i.e. a work functionW of 4.5 eV and a Fermi
energyEF of 5.8 eV. The grid is set at the distanceD = 15 nm with an electrical potential
of 30 V, with respect to the metal tip. The wavefunction cancellation radiusR is taken
equal to 15 nm. The first figure shows the considered geometry.

Figure 2 shows the particle probability density (i.e.|9(r)|2) corresponding to incident
waves characterized bym subscript ranging from−2 to+2, as a function ofρ for z = D.
The maximum value is normalized to unity and the image potential is not accounted for.
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Figure 1. Schematic representation of the metal (limited by the planez = 0 nm), the tip and
the grid (represented by the planez = 15 nm).

Figure 2. Normalized particle probability density atz = 15 nm, considering only states described
bym = 0,±1 or±2, without image potential. The dotted curve is an analytic result with no tip.

The dotted curve corresponds to the particle probability density one would analytically
obtain if the potential distribution in the region 0< z < D were linear (i.e. no tip and
no image contribution). Excellent agreement is obtained in the right part of the figure,
where the tip induced potential perturbation becomes negligible. This region corresponds
to electrons tunnelling across the triangular potential barrier. The intensity enhancement at
ρ = 0 due to the tip is around 500 000.

The effects of the artificial wavefunction vanishing condition9(ρ, φ, z) = 0 for ρ > R
are restricted to the vicinity ofρ = R. No change is observed in the wide central part of
the scattering domain.



876 A Mayer and J-P Vigneron

The contribution of the tip (appearing at the left side of the picture) appears to be very
important form = 0 and almost negligible for|m| = 2. This is due to the fact that the basis
functions corresponding to high|m| values are very small in the region nearρ = 0, where
the tip potential perturbation is confined. This effect has already been observed in scanning
tunnelling microscopy simulations using the Green function formalism [24] and justifies the
restriction in the consideredm values for this field emission situation. The effect of the
neglectedm values is to bring the right side of the figure closer to the tiplessρ = 0 current.

Figure 3 shows the particle probability density obtained when the image potential is
included, for incident basis functions characterized bym subscripts ranging from−2 to+2
andz values ofD.

Figure 3. Normalized particle probability density atz = 15 nm, considering only states described
by m = 0, ±1 or±2, with image potential. The dotted curve is an analytic result with no tip.

The image potential enhances the particle presence probabilities by a factor of 300
(compared to the values obtained without tip and image potential). This effect is related to
the decrease of the potential barrier in front of the metal. The emerging electrons describe a
beam with half-opening angle of 4.5◦ (by considering the current density orientation). This
corresponds typically to the experimental values obtained at macroscopic distances with
similar tips but somewhat larger values for the bias and distanceD. This half-opening angle,
evaluated at the grid, was found to become smaller with increasing metal–grid distances or
diminishing bias. Changing the tip dimensions also modifies it. Increasing the tip radius
or reducing the tip height results in a lower half-opening angle. The self-collimation effect
observed in the FPM [30, 31] is due to the long-range influence of the base tip on the
potential. This is not considered here.

Figure 4 shows thez component of the current density (obtained by energy integration
of 1 eV below the Fermi level). The current density value for largeρ is in good agreement
with the calculations of Goodet al [4] for field emission by a planar emitter.
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Figure 4. Current density atz = 15 nm, considering only states described bym = 0, ±1 or
±2, with image potential.

5. Conclusion

A method to compute elastic scattering in the presence of rotational invariance was
presented, assuming a reasonable boundary condition adequate for tunnelling problems.
This method was applied to a field-emission problem. Since the only information needed
is the axially symmetric potential energy distribution, it can be applied to many kinds of
field-emission situation with rotational invariance.

This method has some advantages over the Green formalism [24, 25] in situations where
the potential perturbation cannot be considered localized in space. In fact, the Green
formalism requires the creation of a matrix whose size corresponds to the square of the
number of perturbed potential elements. Here, this number would appear to be proportional
to E2R2D2. Such a matrix is not needed here. On the other hand, the computation of
the coupling coefficientsMj ′

m,j (z) requires arrays whose size depends on the number of
basis functions and on the number of discretization steps inR. This number appears to be
proportional toE3/2R3. The computations performed here are out of reach of the Green
formalism with the present state of computers.

This method is limited to regions where the wavefunction cancellation condition is
physically admissible. Further work is needed to obtain the current density at long
(macroscopic) distances from the source.
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Appendix A. Eigensystem method for wavefunction propagation

Let us consider the propagation equation

d28m,j (z)

dz2
+
[

2m

h̄2 E − k2
m,j −

2m

h̄2 V0(z)

]
8m,j (z) =

∑
j ′
M
j ′
m,j (z)8m,j ′(z).

The subscriptsm are not really needed, as coefficients8m,j (z) with differentm values

are not coupled. It is important to notice that the coupling coefficientsM
j ′
m,j (z) are real,

symmetric inj and j ′. These coefficients define, for eachm and z value, a symmetric
matrix. Their eigenvalues are real and their eigenvectors are orthonormal.

Let us assume the potentialV (ρ, z) varies discontinuously alongz with constant values
on small steps, i.e.V (ρ, z) has noz dependence on the step1z. The coupling coefficients
M

j ′
m,j (z) are constant on this step and take the valueM

j ′
m,j (1z). Let us consider the vector

8̄m(z), containing all8m,j (z) coefficients.
The system of coupled equations can be rewritten as

d2

dz2
8̄m(z)+ (E)8̄m(z) = (M)8̄m(z)

where (E) is a diagonal matrix containing the elements(2m/h̄2)E− k2
m,j − (2m/h̄2)V0(1z)

and (M) is a matrix containing the elementsMj ′
m,j (1z).

(E) − (M) being a real symmetric matrix, its eigenvalues are real and there exists an
orthonormal basis of associated eigenvectors. Let(U) be the unitary matrix containing
in columns the(E) − (M) eigenvectors and (λ) the diagonal matrix containing the
corresponding eigenvalues.(E)− (M) can be replaced by(U)(λ)(U)∗.

Let us define1̄m(z) = U ∗8̄m(z). The propagation equation becomes

d2

dz2
1̄m(z)+ (λ)1̄m(z) = 0.

This system of uncoupled equations is easily solved and allows for an analytical
propagation of1̄m(z) over1z. 8̄m(z) is retrieved by the relation̄8m(z) = U1̄m(z).

Appendix B. Computation of electrostatic potential in cylindrical coordinates
assuming a total rotational symmetry axis

Let us define a three-dimensional grid in cylindrical coordinates(i1ρ, j1z, k1φ), where
the steps alongρ, z andφ are constant. Due to the total axial symmetry around thez axis,
the last coordinate will not need to be considered. As general notation,fi,j will be used
for f (i1ρ, j1z).

Assuming no charge density (included in the image potential), one obtains from the
Maxwell equations

∇ · [ε(r)∇V (r)] = 0.

or

∇ε(r) · ∇V (r)+ ε(r)1V (r) = 0.
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Cylindrical coordinate expression of the gradient and Laplacian is then used, assuming
no φ dependence for all variables. The discrete expression for1V (r) in cylindrical
coordinates is

1

1ρ2

(
1+ 1

2i

)
Vi+1,j + 1

1ρ2

(
1− 1

2i

)
Vi−1,j + 1

1z2
Vi,j+1+ 1

1z2
Vi,j−1

−
(

2

1ρ2
+ 2

1z2

)
Vi,j .

The scalar product∇ε(r) · ∇V (r) contains the derivative∂ε/∂ρ approached by

εi+1,j − εi−1,j

21ρ

while ∂V/∂ρ is written

Vi+1,j − Vi,j
1ρ

when associated with the termεi+1,j

or
Vi,j − Vi−1,j

1ρ
when associated with the termεi−1,j .

Similar expressions are used for partial derivatives alongz.
The final result reads

Vi,j = {1z2(εi+1,j + εi,j (2+ 1/i))Vi+1,j +1z2(εi−1,j + εi,j (2− 1/i))Vi−1,j

+1ρ2(εi,j+1+ 2εi,j )Vi,j+1+1ρ2(εi,j−1+ 2εi,j )Vi,j−1}
×{1z2(εi+1,j + εi−1,j )+1ρ2(εi,j+1+ εi,j−1)+ 4(1ρ2+1z2)εi,j }−1.

For points located on theZ axis (i = 0), symmetry considerations lead to the result

V0,j = 1z22(ε1,j + 2ε0,j )V1,j +1ρ2(ε0,j+1+ 2ε0,j )V0,j+1+1ρ2(ε0,j−1+ 2ε0,j )V0,j−1

1z22ε0,j +1ρ2(ε0,j+1+ ε0,j−1)+ 4(1ρ2+1z2)ε0,j
.

The boundary conditions being defined, the last two formulas are applied iteratively
until convergence is reached.

The number of iterations can be reduced by iterating a combination of new and old
potential values. A classic over-relaxation method (with potential changes weighted with
(α = 1.9) was used to carry out the iterative scheme.

Appendix C. Density of states in a cylinder of radiusR

Let us consider a cylinder of radiusR and lengthL. This cylinder is assumed to be occupied
with electrons, whose kinetic energy ranges from 0 toE.

The different possible states alongρ are described by the eigenfunctions

Jm(km,jρ)

(
2π
∫ R

0
ρ[Jm(km,jρ)]

2 dρ

)−1

eimφ

where the radially oriented wavevectorkm,j satisfies the propertyJm(km,jR) = 0 and is

limited by
√

2mE/h̄2. All m values, compatible with the existence of akm,j value have to
be considered.
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Considering the limitE to the kinetic energy, the axially oriented wavevectorkz
associated with a valuekm,j ranges from−

√
2mE/h̄2− k2

m,j to
√

2mE/h̄2− k2
m,j .

Recalling the physically imposed distance 2π/L between two successive states along
kz and taking account of the two possible spin orientations, the total number of states in the
cylinder is

2
L

2π
2
∑
m

∑
j

√
2mE

h̄2 − k2
m,j .

The number of electronic states per unit volume, for kinetic energy ranging from 0 toE,
will be denotedN(E) and is obtained by dividing this last number by the cylinder volume
πR2L.

The density of states for kinetic energyE, denotedD(E), is defined by the relation

dN(E) = D(E) dE.

Its expression is easily derived:

D(E) = 2m

(Rπh̄)2

∑
m

∑
j

1√
2mE/h̄2− k2

m,j

.
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